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Abstract: Excessive exposure to ambient (outdoor) air pollution may greatly increase the incidences
of respiratory and cardiovascular diseases. Accurate reports of the spatial-temporal distribution
characteristics of daily PM2.5 exposure can effectively prevent and reduce the harm caused to humans.
Based on the daily average concentration data of PM2.5 in Beijing in May 2014 and the spatio-temporal
kriging (STK) theory, we selected the optimal STK fitting model and compared the spatial-temporal
prediction accuracy of PM2.5 using the STK method and ordinary kriging (OK) method. We also reveal
the spatial-temporal distribution characteristics of the daily PM2.5 exposure in Beijing. The results
show the following: (1) The fitting error of the Bilonick model (BM) model which is the smallest
(0.00648), and the fitting effect of the prediction model of STK is the best for daily PM2.5 exposure.
(2) The cross-examination results show that the STK model (RMSE = 8.90) has significantly lower
fitting errors than the OK model (RMSE = 10.70), so its simulation prediction accuracy is higher.
(3) According to the interpolation of the STK model, the daily exposure of PM2.5 in Beijing in May
2014 has good continuity in both time and space. The overall air quality is good, and overall the
spatial distribution is low in the north and high in the south, with the highest concentration in the
southwestern region. (4) There is a certain degree of spatial heterogeneity in the cumulative duration
at the good, moderate, and polluted grades of China National Standard. The areas with the longest
cumulative duration at the good, moderate and polluted grades are in the north, southeast, and
southwest of the study area, respectively.
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1. Introduction

Ambient (outdoor) air pollution usually refers to the phenomenon that due to human activities
or natural processes, some substances enter the air and endanger the comfort, health, and welfare of
the human body when they remain in the air at a high concentration for a long time [1,2]. With the
continuous acceleration of the urbanization process, PM2.5 has become one of the major pollutants of
smog outbreaks [3,4]. PM2.5 may cause reduced atmospheric visibility [5–7] and increase the incidences
of respiratory and cardiovascular diseases [8–10]. The global disease burden study (GBD) estimated
that 9 million premature deaths were caused by environmental pollution-related diseases in 2015,
which accounted for 16% of the total deaths worldwide. The estimated number of deaths caused by
PM2.5 increased from 3.5 million in 1990 to 4.2 million in 2015, an increase of 20% [11]. At the beginning
of 2013, the Beijing–Tianjin–Hebei urban agglomeration represented by Beijing had a maximum daily
average concentration of PM2.5 of 500 µg m−3 [12], which posed a serious threat to public health
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in Beijing and might greatly increase the risk of illness for residents [13]. Accurate reports of the
spatial-temporal distribution characteristics of daily PM2.5 exposure can effectively prevent and reduce
the harm caused to humans. The high-accuracy spatial-temporal concentration of PM2.5 can effectively
reveal the PM2.5 exposure in Beijing.

Extensive research has been conducted on spatial–temporal prediction models of PM2.5 [14,15].
However, in order to obtain the spatial–temporal characteristics of PM2.5 in the region, the spatial–temporal
distribution characteristics of the pollutant concentration in the whole region have to be predicted based
mainly on the limited monitoring network or the related supporting factors [16]. The recent methods
used to predict the PM2.5 concentration in previous studies include mainly the land use regression model,
atmospheric dispersion model, and interpolation model [17]. Among them, the land use regression model
uses the mean annual value of PM2.5 concentration monitoring data as the dependent variable and the
population density, traffic conditions, and land use types as the independent variables to establish a
multivariate linear regression equation to estimate the PM2.5 concentration [18–20]. Although this method
may involve the high spatial resolution simulation of the PM2.5 concentration with the assistance of
supporting factors, it can only simulate the overall trend of large areas over a long period of time and is
not suitable for high-temporal resolution simulations in small areas. The atmospheric dispersion model
takes comprehensive consideration of various environmental variables, such as the impact of meteorology
and topography on the migration, dispersion, and conversion of PM2.5, to predict spatial–temporal
PM2.5 concentrations [21]. Although the atmospheric dispersion model considers the migration and
dispersion processes of the atmosphere and has a high temporal and spatial resolution in the simulation,
it requires many complicated environmental variables such as traffic volumes, emissions from point
sources, meteorology, monitoring measurements and topography. And the overall implementation cost of
equipment and software is high [22]. The interpolation model uses the PM2.5 monitoring measurements
to predict the regional PM2.5 spatial distribution characteristics. This method makes full use of the
actual observation data of monitoring stations. The prediction results of the simulation are relatively
reliable, the cost of equipment and software is low and it is easy to use for large-scale application [22,23].
Therefore, the interpolation model has become one of the most popular methods to predict PM2.5

concentration by simulation.
Previous studies have shown that PM2.5 has good continuity in both time and space [24,25].

However, most interpolation studies only consider the spatial interpolation of PM2.5 concentrations and
fail with respect to the spatial–temporal prediction of PM2.5 [26,27]. For example, Wang et al., used OK
and statistical analysis methods to discuss the spatial–temporal distribution characteristics of PM2.5 in
Beijing in 2013 and its correlation with precursors and atmospheric oxidation [10]. Wang Zhenbo, et al.,
used the OK and Moran’s I indices to reveal the characteristics of the spatial–temporal pattern of PM2.5

in China in 2014 [4]. The introduction of spatio-temporal kriging (STK) theory effectively makes up
for the lack of interpolation in the temporal dimension. In view of this, based on the daily average
concentration of PM2.5 at 35 sites in Beijing, we selected the STK model with a good fitting effect and
compared it with the OK model to select the optimal spatial–temporal prediction model to reveal the
spatial–temporal characteristics of PM2.5 exposure in Beijing. Through the accurate simulation of the
concentration distribution of PM2.5 in Beijing to reveal the spatial–temporal characteristics of PM2.5

exposure, we provide support for the accurate study of the health risks of PM2.5 exposure.

2. Research Data and Methods

2.1. Overview of the Study Area

The study area is located in the central and southern parts of Beijing, and is a rectangular range
built on the four corners of the 35 environmental monitoring sites in Beijing. It is located at 115.9–117.1◦

E, 39.5–40.5◦ N and has an area of approximately 10,600 km2 (Figure 1). This area includes the urban
area of Beijing. The terrain is high in the northwest and low in the southeast. The northwestern region
is Yanshan and Taihang Mountains, and the southeastern region is a plain. This area belongs to the
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northern temperate sub-humid climate, with an average annual rainfall of approximately 600 mm.
Due to urbanization in the past decade, the rapid increase in the population, energy consumption,
and the number of motor vehicles in Beijing has been accompanied by the frequent outbreak of smog,
which poses a serious threat to the health of local residents.
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2.2. Data Sources

The input data of this paper are the daily PM2.5 concentration for 31 days (from 1 May 2014
to 31 May 2014) at the 35 monitoring sites in Beijing. The data were obtained from the Beijing
Environmental Protection Monitoring Center [28]. The daily average data were calculated by hourly
PM2.5 concentration data. In accordance with the scientific principles for the selection of the inspection
sites, ChaoYangNongZhanGuan (Site 6), YongDingMenNeiDaJie (Site 32), FengTaiHuaYuan (Site 10)
and XiZhiMenBeiDaJie (Site 33) were selected as the four inspection sites in the easterly, southerly,
westerly, and northerly directions, respectively. They were used to verify the accuracy at the later stage
to compare the interpolation effects of the OK model and the STK model.

2.3. Prediction Model Construction

2.3.1. OK Model

The OK model mainly uses variograms of geographic factors and the structural characteristics
of the original data to perform unbiased and linear optimal interpolation estimation of spatial
variables. This model can overcome the problem that the interpolation error is difficult to analyze,
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can theoretically estimate the error point by point, and will not produce the boundary effect of
regression analysis. It is an unbiased estimation method of spatial interpolation [29]. The formula for
the OK model is

Z(X) =
n

∑
i=1

λZi (1)

where Z(X) is the estimated value at X; n is the number of monitoring sites; λ is the kriging weight;
and Zi is the measured value at Xi.

2.3.2. STK Model

There are two types of STK models: separation models and non-separation models. There are
three types of separation models: Bilonick model (BM), Dagum model (DM), and Ma model (MM).
There are three types of non-separation models: Cressie-Huang model 1 (CH1), Cressie-Huang model
2 (CH2), and Gneiting model (GM). In addition, some sub-models have corresponding sub-models
in the spatial and temporal dimensions and the model’s expression is presented from Equation (2)
to Equation (9) [26,27,30]. In this study, the optimal STK model is selected based on the fitting error
of six models. The fitting error reflects the matching effect between the time and space position of
the sample point and the model fitting surface based on the STK model; the smaller the fitting error,
the better the effect of the fitting model.

(1) BM

The model expression is

γ(hs, ht) = γs(hs) + γt(ht) + γst(hst) (2)

hst =
√

hs2 + aht2 (3)

where γ(hs, ht) is the Spatiotemporal variation function, γs, γt and γst can use the form of spatial
variograms, such as the gaussian model, exponential model, spherical model, and linear model; hst

is the spatio–temporal distance of spatio-temporal variables, hs is the spatial distance of space-time
variables, and ht is the time distance of space and time variables. a is the spatio-temporal geometric
anisotropy ratio.

When γs(hs) is selected in the linear model, γt(ht) and γst(hst) are selected in the spherical model,
the BM model expression is

γ(hs, ht) = C0 + Cshs + Ct(
3ht

2at
− 3ht

3

2at3 ) + Cst(
3hst

2ast
− 3hst

3

2ast3 ) (4)

where C0 is the spatio-temporal nugget effect, Cs is the spatial dimension coefficient, Ct is the
time dimension arch height, at is the time dimension variation, and ast is the spatio-temporal
dimension variation.

(2) DM

The model expression is

γ(hs, ht) = γs(hs) + γt(ht)− γs(hs)γt(ht) (5)

where γ(hs, ht) is the spatiotemporal variation function, γs(hs) and γt(ht) are the spatio-temporal
variograms, respectively. hs is the spatial distance of spatio-temporal variables, and ht is the time
distance of spatio-temporal variables. the variogram γs(hs), γt(ht) is defined as

γs(hs) =

(
(1 + Cshs

−as)
−βs

1 + (1 + Cshs−as)−βs

)
(6)
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γt(ht) =

(
(1 + Ctht

−at)
−βt

1 + (1 + Ctht−at)−βt

)
(7)

where Cs, Ct are the spatial and time scale parameter, respectively. as, βs are the spatial smoothing
parameters, at, βt are the time smoothing parameters.

(3) MM

The model expression is

γ(hs, ht) =

{
0, hs = ht = 0

σ2
{

1− 1−exp{−γs(hs)−γt(ht)}
γs(hs)+γt(ht)

}
, otherwise

(8)

where γ(hs, ht) is the spatiotemporal variation function, σ2 is the covariance of spatio-temporal
variation function, γs(hs), γt(ht) are the spatial and time variograms, respectively. Similarly, these
models can use the gaussian model, exponential model, spherical model, and linear model. hs is the
spatial distance of space-time variables, and ht is the time distance of space and time variables.

When γs(hs) is selected the linear model, γt(ht) is selected the spherical model, the MM model
expression is

γ(hs, ht) =


0, hs = ht = 0

σ2

1−
1−exp

{
−C0−Cshs−Ct

(
3ht
2at
− 3ht

3

2at3

)}
C0+Cshs+Ct

(
3ht
2at
− 3ht3

2at3

)
, otherwise

(9)

where σ2 is the covariance of the spatio-temporal variation function, C0 is the spatio-temporal nugget
effect, Cs is the spatial dimension coefficient, Ct is the time dimension arch height, at is the time
dimension variation, hs is the spatial distance of space and time variables, and ht is the time distance
of space and time variables.

(4) CH1

The model expression is

γ(hs, ht) =


0, hs = ht = 0

C0 + σ2

{
1− (Ctht+1)

((Ctht+1)2+Cs2hs2)
1.5

}
+ α1hs

α2 , otherwise
(10)

where C0 is the spatio-temporal nugget effect, σ2 is the covariance of spatio-temporal variation function,
Ct is the time dimension arch height, Cs is the spatial dimension coefficient, hs is the spatial distance
of spatio-temporal variables, ht is the time distance of spatio-temporal variables, and α1sα2 is the
spatial variation.

(5) CH2

The model expression is

γ(hs, ht) =

{
0, hs = ht = 0

C0 + σ2{1− exp(−Ctht − Cs
2hs

2 − Csthths
2)
}
+ α1hs

α2 , otherwise
(11)

where C0 is the spatio-temporal nugget effect, σ2 is the covariance of spatio-temporal variation function,
Ct is the time dimension arch height, Cs is the spatial dimension coefficient, Cs is the spatio-temporal scale
parameter, hs is spatial distance of spatio-temporal variables, and ht is the time distance of spatio-temporal
variable, and α1sα2 is the spatial variation.
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(6) GM

The model expression is

γ(hs, ht) = σ2

{
1− 1

(aht2α + 1)β2/d exp

[
−chs

2γ

(aht2α + 1)βγ

]
(12)

where, σ2 is the covariance of spatio-time variation function, c is the time scale parameter, β is the
spatial scale parameter, α, γ are smoothing parameter, and d is the spatial dimension.

2.4. Model Error Analysis

In this study, we used the cross-examination method to compare the simulation performance
of two different interpolation methods, OK and STK. The principle is to first assume that the PM2.5

concentration at the inspection site is unknown. Then, the known data from the surrounding sites are
used for prediction. Through the analysis of the error between the predicted and measured values,
the optimal PM2.5 exposure simulation prediction method is selected. The error analysis was conducted
using four indicators, i.e., the minimum error (MINE), maximum error (MAXE), root mean square
error (RMSE) and mean absolute error (MAE). MINE and MAXE were used to calculate the minimum
error and the maximum error, respectively. RMSE was used to indicate the relative estimation error,
and MAE was used to estimate the possible error range of the prediction value.

MINE = MIN(|Z1 − Z(X1)|, |Z2 − Z(X2)| . . . . . . |Zn − Z(Xn)|) (13)

MAXE = MAX(|Z1 − Z(X1)|, |Z2 − Z(X2)| . . . . . . |Zn − Z(Xn)|) (14)

RMSE =

√√√√√ n
∑

i=1
(Zi − Z(Xi))

2

n
(15)

MAE =

n
∑

i=1
|Zi − Z(Xi)|

n
(16)

where n is the number of inspection sites, Zi is the measured PM2.5 value of the i-th station, and Z(Xi)
is the simulated prediction value of the i-th station.

2.5. Daily Average Concentration Calculation

In this study, the spatial–temporal distribution characteristics of the PM2.5 daily average
concentration in Beijing in May 2014 were analyzed using two methods: The daily average
concentration based on site statistics and the daily PM2.5 exposure value of the whole region based on
spatial statistics. The equations are

Z(X) =
1
n

n

∑
i=1

Z(Xi) (17)

Z(X′) =
1
n′

n′

∑
i′=1

Z(Xi′) (18)

where Z(X) and Z(X′) are the daily average concentration based on the site statistics and the daily
average concentration based on the spatial statistics, respectively, n and n′ are the number of monitoring
sites and the number of grids after the interpolation, respectively, and Z(Xi) and Z(Xi′) are the i-th
monitoring site and the i′-th grid value, respectively.
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3. Results and Analysis

3.1. Comparison of STK Models

Before entering data into the STK model, the raw input PM2.5 concentration data were log
transformed to approach a normal distribution. The time resolution, time step, spatial resolution, and the
spatial step were set as 1 day, 7 days, 1 km, and 10 km, respectively. Next, the three separation models,
BM, DM, and MM, and the three non-separation models, CH1, CH2, and GM, were used for model fitting.
The parameters of each model are shown in Table 1. The models are ranked as follows based on their
fitting error(f ): BM (0.00648) < CH1 (0.00654) < DM (0.00751) < MM (0.01589) < CH2 (0.01783) < GM
(0.05317). The fitting error of the BM model is the smallest, indicating that the BM model has the best
fitting effect. The fitting effect of this model is shown in Figure 2. Therefore, the BM model was selected
as the STK fitting model for the daily PM2.5 exposure.
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Table 1. Parameters and errors of different variogram Models of PM2.5 daily average concentration
in Beijing.

Model Parameters and Errors

f C0 Cs Ct at Cst ast a
BM 0.00648 0.0082 8.1187 × 10−8 5.9684 0.0751 0.0008 7005.2376 1325.1108

f Cs as βs Ct at βt
DM 0.00751 83.9718 0.0137 2.2016 11.1526 0.3023 1.2126

f σ C0 Cs Ct at
MM 0.01589 0.3114 0.1387 0.7331 3.4125 3.2701

f σ C0 Ct Cs a1 a2
CH1 0.00654 0.3221 0.0194 0.0998 1.0 × 10−7 7.8735 × 10−6 0.2981

f σ C0 Ct Cs Cst a1 a2
CH2 0.01783 0.2121 0.0452 0.8843 1.6224 × 10−9 .2.3828×10−10 1.3781 × 10−6 0.1961

f σ α β c γ d
GM 0.05317 0.2582 1.3093 0.6905 1.0176 1.9941 0.7224
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3.2. Comparison of OK and STK

Using the BM model of STK, the PM2.5 daily average concentration data for May 2014 were
spatial–temporally interpolated. The results of the PM2.5 STK simulation prediction of the study area
with a time resolution of 1 day and a spatial resolution of 1 km were obtained. Error analysis was
carried out on the monitoring data of the four inspection sites and the simulated prediction values.
The OK model used the monitoring data from the same site for simulation prediction and accuracy
verification. The following is evident in Table 2: The MINE values of the OK and STK models are the
same, both of which are 0.01, indicating that the minimum estimation errors of the two interpolation
methods are both small. The MAXE, MAE, and RMSE values are 32.57, 7.91, and 10.70 for the OK
model, and 30.45, 6.14, and 8.90, respectively, for the STK model. The three errors of the STK model are
obviously smaller than those of the OK model, indicating that the PM2.5 simulation prediction results
of the STK model are clearly better than those of the OK model. The STK model is a more accurate
interpolation model.

Table 2. Comparison of error analysis between spatial–temporal kriging and ordinary kriging.

Ordinary Kriging (OK) Spatial–Temporal Kriging (STK)

MAXE MINE MAE RMSE MAXE MINE MAE RMSE

32.57 0.01 7.91 10.70 30.45 0.01 6.14 8.90

4. Discussion

4.1. Overall Quantity Characteristics of PM2.5

The spatial–temporal distribution of PM2.5 daily average concentrations in Beijing in May 2014
was obtained based on the prediction of the STK model. To better analyze the spatial–temporal
differentiation characteristics of PM2.5 air quality in Beijing, we adopted the national standards
implemented in China in 2016, i.e., the GB 3095-2012 Ambient Air Quality Standards [31]. China ‘s GB
3095-2012 standard behind the standard of WHO [32]; however, China ‘s standard is consistent with the
target WHO Interim target-1. The PM2.5 air quality grade in GB 3095-2012, daily PM2.5 exposure criteria,
and its health impacts are shown in Table 3. According to different dailyPM2.5 exposure values, the air
quality of PM2.5 was classified into six grades, i.e., good (0–35 µg m−3), moderate (35–75 µg m−3),
lightly polluted (75–115 µg m−3), moderately polluted (115–150 µg m−3), heavily polluted (150–250 µg
m−3), and severely polluted (250–500 µg m−3). Based on this standard, the spatial–temporal
characteristics of daily PM2.5 exposure in Beijing in May 2014 were further evaluated.

Using the site averages as the city’s daily average concentration values in Beijing and based on
the results of STK interpolation, we calculated the daily average concentration in all spatial ranges in
the study area in May 2014 as the daily PM2.5 exposure in the city. As shown in Table 3, in May 2014,
the city’s daily air quality grades of PM2.5 in Beijing were mainly good and moderate, accounting for
29.03% and 41.94%, respectively, of the total number of days. Pollution was mainly lightly polluted
and moderately polluted, accounting for 25.81% and 3.23%, respectively, of the total number of days,
while heavily polluted and severely polluted did not occur. The overall air quality in this period was
mainly good and moderate, and the air quality was relatively good.

Table 3. PM2.5 air quality grades and their proportions in Beijing in May 2014.

Air Quality Grade Number of Days Date Proportion

Good 9 2, 4, 5, 11, 12, 14, 26, 27, 28 29.03%
Moderate 13 3, 6, 7, 8, 9, 10, 13, 15, 16, 17, 24, 25, 29 41.94%

Lightly polluted 8 1, 18, 19, 20, 21, 23, 30, 31 25.81%
Moderately polluted 1 22 3.23%
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4.2. Time Variation Characteristics of PM2.5

In this paper, the daily PM2.5 exposure value based on the statistical data of 35 monitoring sites
and the regional daily PM2.5 exposure value of the spatial statistics based on the STK interpolation
were calculated. The comparison shows the following: There are certain differences between the two
calculation results of the daily PM2.5 exposure. The daily PM2.5 exposure based on the site average is
slightly lower than the regional average, but the overall trend of the two methods remains consistent.
As shown in Figure 3, the daily PM2.5 exposure in Beijing in May 2014 had good continuity in the
temporal domain, showing a cyclical trend of a decrease and then an increase followed by another
decrease before an increase, which may be due to the change of wind speed and wind direction in
Beijing in May; the PM2.5 concentration is high (e.g., 22 May) when the wind speed is weak and wind
direction is south. conversely, the PM2.5 concentration declines when the wind speed is strong and
wind direction is north (e.g., 27 May). The daily PM2.5 exposure was the highest on the 1st, 19th, 21st,
22nd, and 31st, all higher than 100 µg m−3. The daily PM2.5 exposure was the lowest on the 2nd, 4th,
5th, 11th, 14th, 26th, and 28th, all less than 30 µg m−3.
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4.3. Spatial Variation Characteristics of PM2.5

Based on the results of the STK interpolation, the spatial distribution characteristics of daily PM2.5

exposure in Beijing in May 2014 are shown in Figure 4. The PM2.5 exposure also had good spatial
continuity, and there was a large spatial heterogeneity between different regions. The areas with higher
PM2.5 exposure were mainly concentrated in the urban areas of Beijing. Light and moderate pollution
occurred mainly on the 1 May. The northeast and southeast areas were mainly covered by moderate
and heavy pollution on the 21st and 31st, respectively, and the remaining areas were covered by light
pollution. Local light pollution appeared on the 6th, 7th, 8th, 13th, 15th, and 25th, and the rest of the
areas had good air quality. On the 18th, 20th, 23rd, and 30th, moderate pollution covered mainly the
southern area. In addition, on the 19th and 22nd, different levels of heavy pollution occurred in the
main downtown area and its surrounding areas.
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The spatial distribution characteristics of the cumulative mean of the daily PM2.5 exposure in
Beijing in May 2014 are shown in Figure 5. The 31-day cumulative mean had good continuity in space,
showing a general trend of being higher in the south and lower in the north. From the north to the
south, there was a gradual transition from low to high exposure. In the southwestern part of the study
area, the cumulative daily PM2.5 exposure concentration of PM2.5 was the highest, indicating that the
area had been under a high PM2.5 exposure concentration of pollution for a long time. According to
previous studies [33], the spatial distribution feature of PM2.5 exposure in Beijing may be related to
topography and traffic emission. West of Beijing is Xishan Mountains, part of the Taihang Mountain;
north of the city is Jundu Mountain, part of the Yanshan Mountains; surrounding the Beijing plain,
these two mountains form a semicircular arc, extending to the southeast. Daily emissions from Beijing
disperse towards the opening of the mountain arc, over the flat plain. Moreover, the ring road traffic
in Beijing has further aggravated spatial agglomeration characteristics of PM2.5. The cumulative
concentration of PM2.5 exposure was also high in the southeast, posing a great hazard in this region.
The PM2.5 cumulative exposure concentration was low in the northern area, and the overall air quality
was good.

Based on the grading results of the daily PM2.5 exposure concentration after STK interpolation,
the cumulative duration of the air quality of the daily PM2.5 exposure in Beijing at good, moderate,
and polluted (including lightly polluted, moderately polluted, heavily polluted, and severely
polluted grades) grades was calculated. As shown in Figure 6, in May 2014, there was a certain
degree of heterogeneity in the cumulative duration of different PM2.5 air quality grades in Beijing.
The cumulative duration of good air quality was 3 to 14 days, and the region with the maximum
cumulative duration was in the north of the study area. The cumulative duration for moderate air
quality was relatively long, ranging from 8 to 14 days, and the area with the largest cumulative
duration was in the southeast of the study area. The cumulative duration for air quality in the polluted
grades was 4 to 14 days, and the area with the longest cumulative duration was in the southwest of
the study area.
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5. Conclusions and Implications

Based on the daily average concentration of PM2.5 in May 2014 in Beijing, we discussed the fitting
effect of six different STK models, performed comparison analysis of the errors between STK and OK,
and analyzed the spatial–temporal distribution characteristics of the daily PM2.5 exposure in Beijing
based on the optimal interpolation model. The main conclusions are as follows:

(1) The comparison of the fitting accuracy of STK for the three separation models, BM, DM, and MM,
and the three non-separation models, CH1, CH2, and GM, shows that the fitting error of the BM
model is the smallest, indicating the best fitting effect for the prediction model of daily PM2.5

exposure to be STK.
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(2) The cross-examination results show that the minimum errors between OK and STK are close.
However, the STK fitting errors are significantly lower than those of OK, indicating that the
prediction effect of STK for PM2.5 is significantly better than that of OK. The STK model is a more
accurate prediction model for daily PM2.5 exposure in Beijing.

(3) From the STK prediction results simulated by the BM model, the daily PM2.5 exposure
concentration in Beijing has good continuity in both time and space and also has considerable
heterogeneity. In May 2014, the overall air quality of PM2.5 in Beijing was good, and the air
quality showed a cyclical trend of decreasing before increasing followed by another decrease
prior to an increase. During this period, heavy pollution occurred only in a few areas, and the
overall spatial distribution characteristics were low pollution in the north and high pollution in
the south, with the highest daily PM2.5 exposure concentration in the southwest.

(4) In May 2014, there was some heterogeneity in the cumulative exposure duration of PM2.5 at
different air quality grades in Beijing. The region with the longest cumulative duration of good
air quality was in the northern part of the study area. The region with the longest cumulative
duration of moderate air quality was in the southeast of the study area. The region with the
longest cumulative duration of polluted air quality was in the southwest of the study area.

In this paper, we studied the spatial–temporal distribution characteristics of daily PM2.5 exposure
in Beijing based on the STK model. Compared with the OK model, the problem of the lack of
interpolation in the temporal dimension in the traditional interpolation method is solved. However,
like the OK model, this method is also based on the limited monitoring sites discretely distributed in
space for interpolation simulation and fails to consider the supporting simulation role of other relevant
factors. It cannot achieve high-precision PM2.5 exposure concentration estimation and cannot obtain
the internal difference characteristics of small areas. In addition, the hourly level model cannot be
realized due to a large amount of computation and the limit of the model tool in our research now.
In future research, the hourly PM2.5 exposure will be achieved in higher spatial and temporal accuracy
by increasing the time precision to the hour level or combining with other relevant factors.
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